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Abstract — A new wavelet-based simulation approach for
the global modeling of high-frequency transistors is
presented. The proposed approach solves the active device
model that combines the transport physics and Maxwell’s
Equations on nonuniform self-adaptive grids. The
nonuniform grids are obtained by applying Daubechies
wavelet transforms followed by thresholding. This allows
forming fine and coarse grids in locations where variable
solutions change rapidly and slowly, respectively. The
developed technique is validated by simulating a
submicrometer. transistor. Different numerical examples are
presented along with illustrative comparison graphs, showing
more than 75% reduction in CPU time, while maintaining
the same degree of accuracy achieved using a uniform grid
case. To the extent of the authors’ knowledge, this is the first
time in literature to implement and report a unified wavelet
technique for fast full-wave physical simulations of
millimeter-wave transistors,

I. INTRODUCTION

. ACCURATE modeling of high-frequency active devices

should involve solving the equations that describe
the transport physics in conjunction with Maxwell’s
Equations. This approach has been addressed by global
circuit modeling that has been demonstrated in [1].

Despite being the correct way to model high-frequency
devices, global modeling techniques suffer from their
extensive CPU-time requirements [1]. Therefore, there is
an imperative need to present a new approach to reduce
the simulation time, while maintaining the same degree of
accuracy presented by the global modeling techniques. A
possible approach is to use multiresolution nonuniform
grids. Such technique could be implemented using

“wavelets.

Accordingly, a fast global modeling simulation
approach for high-frequency active devices should involve
a unified technique to simulate both passive structures and
active devices efficiently, using wavelets,

In literature, different wavelet-based simulation
approaches have been developed for passive structures and
active devices independently. For instance, various
wavelet approaches have been successfully applied to
finite-difference time-domain (FDTD) simmulations of
passive structures [2]-[3]. However, for the active devices
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that are characterized by a set of coupled and highly
nonlinear partial differential equations (PDE’s), applying
the same approach would become quite time consuming
f4]. On the other hand, interpolating wavelets have been
successfully applied to the simple drift diffusion active
device model [5]. Being primarily developed for long-gate
devices, the drift diffusion model leads to inaccurate
estimations of device internal distributions and microwave
characteristics for submicrometer devices [6]. It is worth
mentioning that in [5], the authors proposed a new
technique to solve simple forms of Hyperbolic PDE’s,
using an interpolating wavelet scheme. These PDE’s can
represent Maxwell’s Equations or the simple drift-
diffusion mode!l, but not the complete hydrodynamic
model. Thus, a new approach to apply wavelets to the
hydrodynamic model is needed along with extending it to
Maxwell’s Equations for a fast global modeling simulation
approach of high-frequency active devices.

In this paper, a unified approach to apply wavelets to
the full hydrodynamic model and Maxwell’s equations is
developed. The basic idea is to take snapshots of the
solution during the simulation, and apply wavelet
transform to the current solution to obtain the coefficients
of the details. The coefficients of the details are then
normalized, and a threshold is applied to obtain a
nonuniform grid. Two independent grid-updating criteria
are developed for the active and passive parts of the
problem: Moreover, & threshold formula that is dependent
on the variable solution at any given time has been

- developed and verified. In additions, problems related to
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boundary conditions and discritization are solved.
II. METHODOLOGY

The active device model is based on the moments of
Boltzmanns Transport Equations obtained by integrating
over the momentum space. The integration results in a
strongly coupled highly nonlinear set of partial differential
equations, called the conservation equations. These
equations provide a time-dependent self-consistent
solution for carrier density, carrier energy, and carrier
momentum, respectively, and are given as
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The wavelet-based algorithm for the active device is

presented in [7]. However, the algorithm presented in [7]
does not provide an efficient and adaptive threshold
formula, which is proposed in this paper.
. It should be noted that magnitude ranges of the
variables used in the simulations vary dramatically.
Accordingly, the threshold value should be dependent on
the variable solution at any given iteration. The proposed
threshold formula is given by Eq. (4).
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In this equation, T} is the initial threshold value, d’s are
the coefficients of the details, and #, is the number of grid
points in Xx direction. In this manner, the value of the
threshold T" depends mainly on the variable solution at any

(a)

{

normalizes eakes of the details coeficients

. L L
40 BN 80 120

distance in terms of grid points

bz

an 60

distanca in terms of grid points

plin] 10

given time, rather than being fixed,

The nonuniform grids are conceived by applying
Daubechies wavelet transform to the variable solution at
any given time to obtain the coefficients of the details,"
which are then normalized to its maximum. Only grid
points where the values of the normalized coefficients of
the details larger than the threshold value given by Eq. (4)
are included for the next iteration. Fig. 1 demonstrates
examples for the procedure employed to obtain the
nonuniform grids for the passive and active parts of the
problem. Considering Fig. 1, one can observe that the
proposed algorithm accurately removes grid points in the
locations where variable solutions change slowly.

Now, we turn our attention to Maxwell’s Equations. The
passive part of the FET represents a co-planar structure, in
which a 3D FDTD is developed to solve for the electric
and magnetic fields using Maxwell’s Equations.
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The current density estimated from the active device
conversation equations is used to update the fields in
Maxwell’s Equations. It is worth to mention that the same
approach developed to obtain the nonuniform grid for the
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Fig. 1. (a) Normalized details coefficients for the electric field of the passive part. (b) Grid points marked on the actual
curve of the electric field. (¢) Normalized details coefficients for the electren energy. (d) Grid points marked on the

actual curve of the electron energy.
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variables in the conversation equations is applied to
Maxwell’s Equations as well, However, a different
updating mechanism should be developed to keep track of
the wave propagation within the passive part. The
following is the algorithm developed for grid updating of
FDTD simulations.

Step 1: Construct a 3D matrix M that has only 0’s and
1’s, based whether or not a non-zero solution of the field
exists at this location. For instance, “1” is assigned if a
non-zero field solution exists, and “0” elsewhere. -

Step 2: Estimate the value of p (FDTD grid-updating

factor) as
2 (Mnew ® Mold )i,j,k
ik ' 4]
Nxd ’ Nyd 'de

where M, and M ;; are the matrices constructed using
step one for the current and old solutions of the fields,
respectively. Ny, Nz, and N ; are the number of grid
poinisin X, ¥, and Zz directions, respectively. '
Step 3: Check p’s value against a predefined value, for
example 5%.

Step 4: If satisfied, move the grid to z=z4+dz,
where dz is proportional to p.

Step 5: 1 =1+ dt

I11. RESULTS AND DISCUSSIONS
A, Hydrodynamic Model Simulation Results

The approach presented in this paper is generic,
which can be employed to simwulate any unipolar
transistor. To demonstrate the potential of this approach, it
is applied to an idealized FET structure with the following
dimensions: 0.3umgate length, 0.5umlong source and

drain electrodes, 0.5um source-gate gap, 1im gate-drain
separation, 0.2um deep channel layer and a 0.6um deep
buffer layer. The doping of the active layer is

2-10'7 ¢m = and the one of the buffer layer is 10" em=3.
The transistor is discretized using a mesh size of 64Ax by
64Ay , with At=0.001ps . Forward Euler is adopted as an

explicit finite-difference method. In addition, upwinding is
employed to have a stable finite-difference (FD) scheme.
The space step sizes are adjusted to satisfy Debye length,
while the time step value Ar is chosen to satisfy the
Courant-Friedrichs-Levy (CFL) condition. The simulated
device is biased to V4 =3.0 and V, =0.5V. The DC
distributions are obtained by solving the active device
model only, with the proposed algorithm employed.
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DC drain current convergence curves for the uniform grid

case and the proposed algorithm with different threshold values.

Considering Figures (2)-(3), it can be observed that
using the proposed approach has reduced the CPU-time
dramatically. For instance, there is a reduction of about
75% in CPU-time over the uniform grid case for an initial.
threshold value of 1%, while the DC drain current error is

_ within 1%. Furthermore, using large initial threshold

values affects the accuracy of the solution despite the
CPU-time reduction. The reason is employing a large
initial threshold value results in removing significant grid
points, which degrades the final results.

Moreover, it is noticed that there is no significant
difference in terms of accuracy between the two cases of
initial threshold values equat to (.1% and 1%. The mean
relative error for the two cases is in the order of 3 ~ to 4%.
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Fig. 3. AC output voltage for the uniform grid and the

proposed algorithm for different values of the initial threshold.
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This suggests that using initial threshold value equals to
1% be the right choice in terms of both accuracy and
CPU-time.

B. FDTD Simulation Results

A 3-D Yee-based FDTD code is developed for the
passive part of the problem, with the proposed algorithm
employed. In addition, a Gaussian excitation pulse is
applied to evaluate the algorithm over a wide range of
frequencies. Table I depicts the results, where it is
observed that as the threshold value increases, CPU-time
and error introduced decreases as well, Tt is worth
mentioning here that using an initial threshold value
equals to 10% seems to reduce error along with the CPU-

- time. However, considering Fig, 4, one can conclude that
using an initial threshold value equals to 10% introduces
dispersion, which is a setious type of error. Therefore, an
initial threshold value of 5% is recommended in terms of
both CPU-time and error.

TABLE I
Error on Potential
Ty CPU-time

. X 2-norm Infinity-norm
(Uniform Grid) | 744.90 s ‘
0.1% 300.17s . | 0.0873% 8.80%
1.0% 205925 | 0.0871% 8.75%
5.0% 155.10s 1 0.0778% 7.69%
10.0% 111.05s | 0.0473% 3.66%

It is important to emphasize that the passive and active
patts of the problem have different optimal threshold
values. This is expected since the variables in the
conservations equations are highly nonlinear compared to
the fields obtained when solving Maxwell’s Equations,
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Fig. 4. Potential of the gate at a specific cross-section versus
time for the uniform grid case and the proposed algorithm with
different initial thresheld values.

V. CONCLUSIONS

A new wavelet-based full-wave physical simulation
approach has been developed and successfully applied to a
millimeter-wave transistor. The proposed technique solves
the PDE’s that describe the transport physics, and
Maxwell’s Equations on nonuniform self-adaptive grids,
obtained using a new wavelet-based technique. Moreover,
efficient grid updating criteria for the active and passive
parts of the problem have been developed and verified. A
reduction of 75% in CPU-time is achieved compared to a
uniform grid case with an error of 2% on the DC drain
current, and a mean relative error of order 3 to 4% on the
AC output voltage. Moreover, an 80% CPU-time
reduction is obtained for FDTD simulations with
approximately 0.1% average error on the potential. It has
been observed that tradeoffs exist between the threshold
value, CPU-time, and accuracy, suggesting an optimal
value for the threshold.
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